dropout2d pytorch

Solutions on MaxInterview for dropout2d pytorch by the best coders in the world

showing results for - "dropout2d pytorch"
Brooks
29 Apr 2020
1class Net(nn.Module):
2    def __init__(self):
3        super(Net, self).__init__()
4        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
5        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
6        self.fc1 = nn.Linear(320, 50)
7        self.fc2 = nn.Linear(50, 10)
8
9    def forward(self, x):
10        x = F.relu(F.max_pool2d(self.conv1(x), 2))
11        x = F.relu(F.max_pool2d(F.dropout2d(self.conv2(x)), 2))
12        x = x.view(-1, 320)
13        x = F.relu(self.fc1(x))
14        x = F.dropout(x)
15        x = F.log_softmax(self.fc2(x))
16        return x
17