df['column_name'] = df['column_name'].astype('bool')
For example:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.random_integers(0,1,size=5),
columns=['foo'])
print(df)
df['foo'] = df['foo'].astype('bool')
print(df)
yields
foo
0 False
1 True
2 False
3 True
4 True
Given a list of column_names, you could convert multiple columns to bool dtype using:
df[column_names] = df[column_names].astype(bool)
If you don't have a list of column names, but wish to convert, say, all numeric columns, then you could use
column_names = df.select_dtypes(include=[np.number]).columns
df[column_names] = df[column_names].astype(bool)