1# Concating Means putting frames on bottom of one another
2# --- ---
3# | df1 |
4# | df2 |
5# Concating => | . |
6# | . |
7# | dfn |
8# --- ---
9# Command : pd.concat([df1,df2,...,dfn]) ; df = a dataframe
10
11 ''':::Eaxmple;::'''
12df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
13 'B': ['B0', 'B1', 'B2', 'B3'],
14 'C': ['C0', 'C1', 'C2', 'C3'],
15 'D': ['D0', 'D1', 'D2', 'D3']},
16 index=[0, 1, 2, 3])
17
18df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
19 'B': ['B4', 'B5', 'B6', 'B7'],
20 'C': ['C4', 'C5', 'C6', 'C7'],
21 'D': ['D4', 'D5', 'D6', 'D7']},
22 index=[4, 5, 6, 7])
23
24df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],
25 'B': ['B8', 'B9', 'B10', 'B11'],
26 'C': ['C8', 'C9', 'C10', 'C11'],
27 'D': ['D8', 'D9', 'D10', 'D11']},
28 index=[8, 9, 10, 11])
29
30frames = [df1, df2, df3]
31
32result = pd.concat(frames)
33
34# Note : use ignore_index=True if you need it in pd.concat
1>>> s1 = pd.Series(['a', 'b'])
2>>> s2 = pd.Series(['c', 'd'])
3>>> pd.concat([s1, s2])
40 a
51 b
60 c
71 d
8dtype: object
9
1# Pandas for Python
2
3df['col1 & col2'] = df['col1']+df['col2']
4
5#Output
6#col1 col2 col1 & col2
7#A1 A2 A1A2
8#B1 B2 B1B2